Orthogonal polynomial ensembles in probability theory W König | 196 | 2005 |
Eigenvalues of the Laguerre process as non-colliding squared Bessel processes W König, N O'Connell | 153 | 2001 |
The parabolic Anderson model: Random walk in random potential W König Birkhäuser, 2016 | 126 | 2016 |
Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles W König, N O'Connell, S Roch | 115 | 2002 |
The parabolic Anderson model J Gärtner, W König Interacting stochastic systems, 153-179, 2005 | 109 | 2005 |
Geometric characterization of intermittency in the parabolic Anderson model J Gärtner, W König, S Molchanov | 101 | 2007 |
The universality classes in the parabolic Anderson model R van der Hofstad, W König, P Mörters Communications in mathematical physics 267 (2), 307-353, 2006 | 89 | 2006 |
Almost sure asymptotics for the continuous parabolic Anderson model J Gärtner, W König, SA Molchanov Probability theory and related fields 118, 547-573, 2000 | 82 | 2000 |
Ordered random walks P Eichelsbacher, W König | 69 | 2008 |
Annealed deviations of random walk in random scenery N Gantert, W König, Z Shi Annales de l'Institut Henri Poincare (B) Probability and Statistics 43 (1 …, 2007 | 68 | 2007 |
Moment asymptotics for the continuous parabolic Anderson model J Gärtner, W König Annals of Applied Probability, 192-217, 2000 | 63 | 2000 |
A two cities theorem for the parabolic Anderson model W König, H Lacoin, P Mörters, N Sidorova | 62 | 2009 |
Brownian intersection local times: upper tail asymptotics and thick points W König, P Mörters The Annals of Probability 30 (4), 1605-1656, 2002 | 62 | 2002 |
A survey of one-dimensional random polymers R van der Hofstad, W König Journal of Statistical Physics 103, 915-944, 2001 | 62 | 2001 |
The parabolic Anderson model. Pathways in Mathematics W König Birkhäuser/Springer,[Cham], 2016 | 49 | 2016 |
Central limit theorem for the Edwards model W König, F den Hollander, R van der Hofstad The Annals of Probability 25 (2), 573-597, 1997 | 41 | 1997 |
A variational formula for the free energy of an interacting many-particle system S Adams, A Collevecchio, W König | 39 | 2011 |
Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails M Biskup, W König Communications in Mathematical Physics 341 (1), 179-218, 2016 | 38 | 2016 |
An embedding for the Kesten–Spitzer random walk in random scenery E Csáki, W König, Z Shi Stochastic processes and their applications 82 (2), 283-292, 1999 | 37 | 1999 |
Probabilistic Methods in Telecommunications B Jahnel, W König Springer International Publishing, 2020 | 33 | 2020 |