Follow
Kwangjun Ahn
Kwangjun Ahn
PhD Student, MIT
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
From Nesterov's Estimate Sequence to Riemannian Acceleration
K Ahn, S Sra
Proceedings of Thirty Third Conference on Learning Theory (COLT), PMLR 125 …, 2020
702020
Hypergraph spectral clustering in the weighted stochastic block model
K Ahn, K Lee, C Suh
IEEE Journal of Selected Topics in Signal Processing 12 (5), 959-974, 2018
672018
SGD with shuffling: optimal rates without component convexity and large epoch requirements
K Ahn, C Yun, S Sra
NeurIPS 2020 (*Spotlight* Presentation), 2020
54*2020
Understanding the unstable convergence of gradient descent
K Ahn, J Zhang, S Sra
ICML 2022 (arXiv:2204.01050), 2022
472022
Optimal dimension dependence of the metropolis-adjusted langevin algorithm
S Chewi, C Lu, K Ahn, X Cheng, T Le Gouic, P Rigollet
Conference on Learning Theory (COLT), 1260-1300, 2021
472021
Efficient constrained sampling via the mirror-Langevin algorithm
K Ahn, S Chewi
NeurIPS 2021, 2021
452021
Community recovery in hypergraphs
K Ahn, K Lee, C Suh
IEEE Transactions on Information Theory 65 (10), 6561-6579, 2019
422019
Binary rating estimation with graph side information
K Ahn, K Lee, H Cha, C Suh
NeurIPS 2018, 4272-4283, 2018
322018
Graph Matrices: Norm Bounds and Applications
K Ahn, D Medarametla, A Potechin
arXiv preprint 1604.03423, 2020
26*2020
Learning threshold neurons via the "edge of stability"
K Ahn, S Bubeck, S Chewi, YT Lee, F Suarez, Y Zhang
NeurIPS 2023 (arXiv:2212.07469), 2022
182022
Transformers learn to implement preconditioned gradient descent for in-context learning
K Ahn, X Cheng, H Daneshmand, S Sra
NeurIPS 2023 (arXiv:2306.00297), 2023
172023
Reproducibility in Optimization: Theoretical Framework and Limits
K Ahn, P Jain, Z Ji, S Kale, P Netrapalli, GI Shamir
NeurIPS 2022 (Selected for *Oral* presentation), 2022
142022
Riemannian perspective on matrix factorization
K Ahn, F Suarez
arXiv preprint arXiv:2102.00937, 2021
112021
Understanding Nesterov's Acceleration via Proximal Point Method
K Ahn, S Sra
Symposium on Simplicity in Algorithms (SOSA), 117-130, 2022
10*2022
One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares
Y Min, K Ahn, N Azizan
CDC 2022 (arXiv preprint arXiv:2207.13853), 2022
72022
Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently
H Sun, K Ahn, C Thrampoulidis, N Azizan
NeurIPS 2022 (arXiv preprint arXiv:2205.12808), 2022
72022
Agnostic Learnability of Halfspaces via Logistic Loss
Z Ji, K Ahn, P Awasthi, S Kale, S Karp
ICML 2022 (arXiv:2201.13419), 2022
52022
Information-theoretic limits of subspace clustering
K Ahn, K Lee, C Suh
2017 IEEE International Symposium on Information Theory (ISIT), 2473-2477, 2017
52017
How to escape sharp minima
K Ahn, A Jadbabaie, S Sra
arXiv preprint arXiv:2305.15659, 2023
22023
The Crucial Role of Normalization in Sharpness-Aware Minimization
Y Dai, K Ahn, S Sra
NeurIPS 2023 (arXiv:2305.15287), 2023
22023
The system can't perform the operation now. Try again later.
Articles 1–20