Hypernetwork science via high-order hypergraph walks SG Aksoy, C Joslyn, CO Marrero, B Praggastis, E Purvine EPJ Data Science 9 (1), 16, 2020 | 132 | 2020 |
Numeration systems and Markov partitions from self similar tilings B Praggastis Transactions of the American Mathematical Society 351 (8), 3315-3349, 1999 | 108 | 1999 |
Hypergraph models of biological networks to identify genes critical to pathogenic viral response S Feng, E Heath, B Jefferson, C Joslyn, H Kvinge, HD Mitchell, ... BMC bioinformatics 22 (1), 287, 2021 | 104 | 2021 |
Systematic evaluation of backdoor data poisoning attacks on image classifiers L Truong, C Jones, B Hutchinson, A August, B Praggastis, R Jasper, ... Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 55 | 2020 |
Markov partitions for hyperbolic toral automorphisms BL Praggastis University of Washington, 1992 | 54 | 1992 |
Hypernetwork science: from multidimensional networks to computational topology CA Joslyn, SG Aksoy, TJ Callahan, LE Hunter, B Jefferson, B Praggastis, ... International conference on complex systems, 377-392, 2020 | 35 | 2020 |
Hypergraph analytics of domain name system relationships CA Joslyn, S Aksoy, D Arendt, J Firoz, L Jenkins, B Praggastis, E Purvine, ... Algorithms and Models for the Web Graph: 17th International Workshop, WAW …, 2020 | 21 | 2020 |
A topological approach to representational data models E Purvine, S Aksoy, C Joslyn, K Nowak, B Praggastis, M Robinson Human Interface and the Management of Information. Interaction …, 2018 | 18 | 2018 |
A sheaf theoretical approach to uncertainty quantification of heterogeneous geolocation information CA Joslyn, L Charles, C DePerno, N Gould, K Nowak, B Praggastis, ... Sensors 20 (12), 3418, 2020 | 15 | 2020 |
High performance hypergraph analytics of domain name system relationships C Joslyn, S Aksoy, D Arendt, L Jenkins, B Praggastis, E Purvine, ... HICSS 2019 symposium on cybersecurity big data analytics, 2019 | 14 | 2019 |
ReLVis: Visual Analytics for Situational Awareness During Reinforcement Learning Experimentation. E Saldanha, B Praggastis, T Billow, DL Arendt EuroVis (Short Papers), 43-47, 2019 | 13 | 2019 |
The SVD of convolutional weights: a CNN interpretability framework B Praggastis, D Brown, CO Marrero, E Purvine, M Shapiro, B Wang arXiv preprint arXiv:2208.06894, 2022 | 12 | 2022 |
Experimental observations of the topology of convolutional neural network activations E Purvine, D Brown, B Jefferson, C Joslyn, B Praggastis, A Rathore, ... Proceedings of the AAAI Conference on Artificial Intelligence 37 (8), 9470-9479, 2023 | 11 | 2023 |
HyperNetX: A Python package for modeling complex network data as hypergraphs B Praggastis, S Aksoy, D Arendt, M Bonicillo, C Joslyn, E Purvine, ... arXiv preprint arXiv:2310.11626, 2023 | 9 | 2023 |
Parallel algorithms for efficient computation of high-order line graphs of hypergraphs XT Liu, J Firoz, A Lumsdaine, C Joslyn, S Aksoy, B Praggastis, ... 2021 IEEE 28th International Conference on High Performance Computing, Data …, 2021 | 8 | 2021 |
HyperNetX B Praggastis, D Arendt, C Joslyn, E Purvine, S Aksoy, K Monson Pacific Northwest National Laboratory. Available from: https://github. com …, 2019 | 8 | 2019 |
Maximal sections of sheaves of data over an abstract simplicial complex B Praggastis arXiv preprint arXiv:1612.00397, 2016 | 7 | 2016 |
Local homology dimension as a network science measure C Joslyn, B Praggastis, E Purvine, A Sathanur, M Robinson, S Ranshous 2016 SIAM Workshop on Network Science, 86-87, 2016 | 7 | 2016 |
High-order line graphs of non-uniform hypergraphs: Algorithms, applications, and experimental analysis XT Liu, J Firoz, S Aksoy, I Amburg, A Lumsdaine, C Joslyn, B Praggastis, ... 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2022 | 6 | 2022 |
The pysheaf library M Robinson, C Capraro, B Praggastis | 6 | 2016 |