György Szarvas (Gyuri)
Cited by
Cited by
The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes
V Vincze, G Szarvas, R Farkas, G Móra, J Csirik
BMC bioinformatics 9, 1-9, 2008
The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text
R Farkas, V Vincze, G Móra, J Csirik, G Szarvas
Proceedings of the fourteenth conference on computational natural language …, 2010
What helps where–and why? semantic relatedness for knowledge transfer
M Rohrbach, M Stark, G Szarvas, I Gurevych, B Schiele
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts
G Szarvas, V Vincze, R Farkas, J Csirik
Proceedings of the workshop on current trends in biomedical natural language …, 2008
Automatic construction of rule-based ICD-9-CM coding systems
R Farkas, G Szarvas
BMC bioinformatics 9, 1-9, 2008
On challenges in machine learning model management
S Schelter, F Biessmann, T Januschowski, D Salinas, S Seufert, ...
State-of-the-art anonymization of medical records using an iterative machine learning framework
G Szarvas, R Farkas, R Busa-Fekete
Journal of the American Medical Informatics Association 14 (5), 574-580, 2007
A multilingual named entity recognition system using boosting and c4. 5 decision tree learning algorithms
G Szarvas, R Farkas, A Kocsor
Discovery Science: 9th International Conference, DS 2006, Barcelona, Spain …, 2006
The multilingual amazon reviews corpus
P Keung, Y Lu, G Szarvas, NA Smith
Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020
Cross-genre and cross-domain detection of semantic uncertainty
G Szarvas, V Vincze, R Farkas, G Móra, I Gurevych
Computational Linguistics 38 (2), 335-367, 2012
Hedge classification in biomedical texts with a weakly supervised selection of keywords
G Szarvas
Proceedings of acl-08: HLT, 281-289, 2008
Methods and results of the Hungarian WordNet project
M Miháltz, C Hatvani, J Kuti, G Szarvas, J Csirik, G Prószéky, T Váradi
Proceedings of GWC 2008, 4th, 2007
A highly accurate Named Entity corpus for Hungarian
G Szarvas, R Farkas, L Felföldi, A Kocsor, J Csirik
annotation 2, 3.1, 2006
An apple-to-apple comparison of learning-to-rank algorithms in terms of normalized discounted cumulative gain
R Busa-Fekete, G Szarvas, T Elteto, B Kégl
ECAI 2012-20th European Conference on Artificial Intelligence: Preference …, 2012
Supervised all-words lexical substitution using delexicalized features
G Szarvas, C Biemann, I Gurevych
Proceedings of the 2013 Conference of the North American Chapter of the …, 2013
Mining multiword terms from Wikipedia
S Hartmann, G Szarvas, I Gurevych
Semi-Automatic Ontology Development: Processes and Resources, 226-258, 2012
D Tikk, R Farkas, ZT Kardkovács, L Kovács, T Répási, G Szarvas, ...
Budapest: Typotex, 2007
Combining query translation techniques to improve cross-language information retrieval
B Herbert, G Szarvas, I Gurevych
European Conference on Information Retrieval, 712-715, 2011
Semi-automated construction of decision rules to predict morbidities from clinical texts
R Farkas, G Szarvas, I Hegedűs, A Almási, V Vincze, R Ormándi, ...
Journal of the American Medical Informatics Association 16 (4), 601-605, 2009
GYDER: maxent metonymy resolution
R Farkas, E Simon, G Szarvas, D Varga
Proceedings of the Fourth International Workshop on Semantic Evaluations …, 2007
The system can't perform the operation now. Try again later.
Articles 1–20