متابعة
Gabor Csanyi
Gabor Csanyi
Professor of Molecular Modelling, Engineering Laboratory, University of Cambridge
بريد إلكتروني تم التحقق منه على cam.ac.uk
عنوان
عدد مرات الاقتباسات
عدد مرات الاقتباسات
السنة
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
AP Bartók, MC Payne, R Kondor, G Csányi
Physical review letters 104 (13), 136403, 2010
28362010
On representing chemical environments
AP Bartók, R Kondor, G Csányi
Physical Review B—Condensed Matter and Materials Physics 87 (18), 184115, 2013
25122013
Gaussian process regression for materials and molecules
VL Deringer, AP Bartók, N Bernstein, DM Wilkins, M Ceriotti, G Csányi
Chemical Reviews 121 (16), 10073-10141, 2021
8022021
Comparing molecules and solids across structural and alchemical space
S De, AP Bartók, G Csányi, M Ceriotti
Physical Chemistry Chemical Physics 18 (20), 13754-13769, 2016
7612016
Reinforcement of single-walled carbon nanotube bundles by intertube bridging
A Kis, G Csanyi, JP Salvetat, TN Lee, E Couteau, AJ Kulik, W Benoit, ...
Nature materials 3 (3), 153-157, 2004
7572004
Machine learning unifies the modeling of materials and molecules
AP Bartók, S De, C Poelking, N Bernstein, JR Kermode, G Csányi, ...
Science advances 3 (12), e1701816, 2017
7252017
Performance and cost assessment of machine learning interatomic potentials
Y Zuo, C Chen, X Li, Z Deng, Y Chen, J Behler, G Csányi, AV Shapeev, ...
The Journal of Physical Chemistry A 124 (4), 731-745, 2020
7122020
Machine learning interatomic potentials as emerging tools for materials science
VL Deringer, MA Caro, G Csányi
Advanced Materials 31 (46), 1902765, 2019
7052019
G aussian approximation potentials: A brief tutorial introduction
AP Bartók, G Csányi
International Journal of Quantum Chemistry 115 (16), 1051-1057, 2015
6602015
Machine learning based interatomic potential for amorphous carbon
VL Deringer, G Csányi
Physical Review B 95 (9), 094203, 2017
6582017
Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
F Cervantes-Sodi, G Csányi, S Piscanec, AC Ferrari
Physical Review B—Condensed Matter and Materials Physics 77 (16), 165427, 2008
6342008
Machine learning a general-purpose interatomic potential for silicon
AP Bartók, J Kermode, N Bernstein, G Csányi
Physical Review X 8 (4), 041048, 2018
6042018
Surface diffusion: the low activation energy path for nanotube growth
S Hofmann, G Csanyi, AC Ferrari, MC Payne, J Robertson
Physical review letters 95 (3), 036101, 2005
5562005
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
I Batatia, DP Kovács, GNC Simm, C Ortner, G Csányi
Advances in Neural Information Processing Systems (NeurIPS) 2022, 2022
4652022
Physics-inspired structural representations for molecules and materials
F Musil, A Grisafi, AP Bartók, C Ortner, G Csányi, M Ceriotti
Chemical Reviews 121 (16), 9759-9815, 2021
4572021
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
GA Cisneros, KT Wikfeldt, L Ojamäe, J Lu, Y Xu, H Torabifard, AP Bartók, ...
Chemical reviews 116 (13), 7501-7528, 2016
4342016
“Learn on the Fly”: A Hybrid Classical and Quantum-Mechanical<? format?> Molecular Dynamics Simulation
G Csányi, T Albaret, MC Payne, A De Vita
Physical review letters 93 (17), 175503, 2004
3662004
The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds
G Csányi, PB Littlewood, AH Nevidomskyy, CJ Pickard, BD Simons
Nature Physics 1 (1), 42-45, 2005
3542005
Accuracy and transferability of Gaussian approximation potential models for tungsten
WJ Szlachta, AP Bartók, G Csányi
Physical Review B 90 (10), 104108, 2014
3332014
Chemically active substitutional nitrogen impurity in carbon nanotubes
AH Nevidomskyy, G Csányi, MC Payne
Physical review letters 91 (10), 105502, 2003
2982003
يتعذر على النظام إجراء العملية في الوقت الحالي. عاود المحاولة لاحقًا.
مقالات 1–20