Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network Z Zhou, G He, S Wang, G Jin Computers & Fluids 195, 104319, 2019 | 148 | 2019 |

Wall model based on neural networks for LES of turbulent flows over periodic hills Z Zhou, G He, X Yang Physical Review Fluids 6 (5), 054610, 2021 | 63 | 2021 |

A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution … Z Zhou, S Wang, G Jin Physics of Fluids 30 (10), 2018 | 39 | 2018 |

A structural subgrid-scale model for the collision-related statistics of inertial particles in large-eddy simulations of isotropic turbulent flows Z Zhou, S Wang, X Yang, G Jin Physics of Fluids 32 (9), 2020 | 26 | 2020 |

Hydrodynamic force and torque models for a particle moving near a wall at finite particle Reynolds numbers Z Zhou, G Jin, B Tian, J Ren International Journal of Multiphase Flow 92, 1-19, 2017 | 14 | 2017 |

Reynolds number effect on statistics of turbulent flows over periodic hills Z Zhou, T Wu, X Yang Physics of Fluids 33 (10), 2021 | 13 | 2021 |

Investigation of the wake characteristics of an underwater vehicle with and without a propeller Z Zhou, Z Li, X Yang, S Wang, D Xu Ocean Engineering 266, 113107, 2022 | 11 | 2022 |

A robust super-resolution reconstruction model of turbulent flow data based on deep learning Z Zhou, B Li, X Yang, Z Yang Computers & Fluids 239, 105382, 2022 | 11 | 2022 |

Towards multi-fidelity simulation of flows around an underwater vehicle with appendages and propeller Z Zhou, Z Li, G He, X Yang Theoretical and Applied Mechanics Letters 12 (1), 100318, 2022 | 10 | 2022 |

Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method Z Zhou, J Chen, G Jin Acta Mechanica 228, 3203-3222, 2017 | 8 | 2017 |

Data driven turbulence modeling in turbomachinery—an applicability study L Fang, TW Bao, WQ Xu, ZD Zhou, JL Du, Y Jin Computers & Fluids 238, 105354, 2022 | 7 | 2022 |

A wall model learned from the periodic hill data and the law of the wall Z Zhou, XIA Yang, F Zhang, X Yang Physics of Fluids 35 (5), 2023 | 6 | 2023 |

A new single formula for the law of the wall and its application to wall-modeled large-eddy simulation F Zhang, Z Zhou, H Zhang, X Yang European Journal of Mechanics-B/Fluids 94, 350-365, 2022 | 6 | 2022 |

Deep learning method for the super-resolution reconstruction of small-scale motions in large-eddy simulation Q Zhao, G Jin, Z Zhou AIP Advances 12 (12), 2022 | 4 | 2022 |

Strain self-amplification is larger than vortex stretching due to an invariant relation of filtered velocity gradients PF Yang, ZD Zhou, H Xu, GW He Journal of Fluid Mechanics 955, A15, 2023 | 3 | 2023 |

Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain Y Li, Z Li, Z Zhou, X Yang Sustainability 15 (6), 5139, 2023 | 2 | 2023 |

Homogeneity constraints on the mixed moments of velocity gradient and pressure Hessian in incompressible turbulence Z Zhou, PF Yang Physical Review Fluids 8 (2), 024601, 2023 | 2 | 2023 |

Effects of wall topology on statistics of cube-roughened wall turbulence S Li, Z Zhou, D Chen, X Yuan, Q Guo, X Yang Boundary-Layer Meteorology 186 (2), 305-336, 2023 | 2 | 2023 |

A data-driven wall model for LES of flow over periodic hills Z Zhou, G He, X Yang APS Division of Fluid Dynamics Meeting Abstracts, R01. 020, 2020 | 1 | 2020 |

A data-driven distributed force model for wall-modeled large-eddy simulations of rough-wall turbulence Z Zhou, S Li, G He, X Yang Journal of Computational Physics 514, 113241, 2024 | | 2024 |