Follow
Danielle Saunders
Danielle Saunders
DeepL
Verified email at deepl.com - Homepage
Title
Cited by
Cited by
Year
Reducing gender bias in neural machine translation as a domain adaptation problem
D Saunders, B Byrne
arXiv preprint arXiv:2004.04498, 2020
1312020
Domain adaptation and multi-domain adaptation for neural machine translation: A survey
D Saunders
Journal of Artificial Intelligence Research 75, 351-424, 2022
842022
Neural Machine Translation Doesn't Translate Gender Coreference Right Unless You Make It
D Saunders, R Sallis, B Byrne
arXiv preprint arXiv:2010.05332, 2020
732020
The practical ethics of bias reduction in machine translation: Why domain adaptation is better than data debiasing
M Tomalin, B Byrne, S Concannon, D Saunders, S Ullmann
Ethics and Information Technology, 1-15, 2021
572021
An operation sequence model for explainable neural machine translation
F Stahlberg, D Saunders, B Byrne
arXiv preprint arXiv:1808.09688, 2018
312018
Multi-representation ensembles and delayed SGD updates improve syntax-based NMT
D Saunders, F Stahlberg, A De Gispert, B Byrne
arXiv preprint arXiv:1805.00456, 2018
302018
Domain adaptive inference for neural machine translation
D Saunders, F Stahlberg, A de Gispert, B Byrne
arXiv preprint arXiv:1906.00408, 2019
292019
SGNMT--A Flexible NMT Decoding Platform for Quick Prototyping of New Models and Search Strategies
F Stahlberg, E Hasler, D Saunders, B Byrne
arXiv preprint arXiv:1707.06885, 2017
232017
Using context in neural machine translation training objectives
D Saunders, F Stahlberg, B Byrne
arXiv preprint arXiv:2005.01483, 2020
222020
First the worst: Finding better gender translations during beam search
D Saunders, R Sallis, B Byrne
arXiv preprint arXiv:2104.07429, 2021
172021
Cued@ wmt19: ewc&lms
F Stahlberg, D Saunders, A de Gispert, B Byrne
arXiv preprint arXiv:1906.05447, 2019
17*2019
UCAM biomedical translation at WMT19: Transfer learning multi-domain ensembles
D Saunders, F Stahlberg, B Byrne
arXiv preprint arXiv:1906.05786, 2019
152019
Domain adaptation for neural machine translation
D Saunders
142021
Why not be versatile? Applications of the SGNMT decoder for machine translation
F Stahlberg, D Saunders, G Iglesias, B Byrne
arXiv preprint arXiv:1803.07204, 2018
132018
Addressing exposure bias with document minimum risk training: Cambridge at the WMT20 biomedical translation task
D Saunders, B Byrne
arXiv preprint arXiv:2010.05333, 2020
122020
Inference-only sub-character decomposition improves translation of unseen logographic characters
D Saunders, W Feely, B Byrne
arXiv preprint arXiv:2011.06523, 2020
62020
Gender, names and other mysteries: Towards the ambiguous for gender-inclusive translation
D Saunders, K Olsen
arXiv preprint arXiv:2306.04573, 2023
32023
Morph-to-word transduction for accurate and efficient automatic speech recognition and keyword search
A Ragni, D Saunders, P Zahemszky, J Vasilakes, MJF Gales, KM Knill
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
32017
The system can't perform the operation now. Try again later.
Articles 1–18