Follow
Philipp Becker
Philipp Becker
Verified email at kit.edu
Title
Cited by
Cited by
Year
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces
P Becker, H Pandya, G Gebhardt, C Zhao, CJ Taylor, G Neumann
International Conference on Machine Learning, 544-552, 2019
1022019
Specializing Versatile Skill Libraries using Local Mixture of Experts
O Celik, D Zhou, G Li, P Becker, G Neumann
5th Annual Conference on Robot Learning, 2021
342021
Differentiable Trust Region Layers for Deep Reinforcement Learning
F Otto, P Becker, NA Vien, HC Ziesche, G Neumann
arXiv preprint arXiv:2101.09207, 2021
302021
Expected information maximization: Using the i-projection for mixture density estimation
P Becker, O Arenz, G Neumann
arXiv preprint arXiv:2001.08682, 2020
122020
Action-conditional recurrent kalman networks for forward and inverse dynamics learning
V Shaj, P Becker, D Büchler, H Pandya, N van Duijkeren, CJ Taylor, ...
Conference on Robot Learning, 765-781, 2021
112021
Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios
V Shaj Kumar, D Büchler, R Sonker, P Becker, G Neumann
arXiv preprint arXiv:2206.14697, 2022
82022
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
M Reuss, N van Duijkeren, R Krug, P Becker, V Shaj, G Neumann
arXiv preprint arXiv:2205.13804, 2022
72022
Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
P Becker, S Mossburger, F Otto, G Neumann
Reinforcement Learning Conference (RLC) 2024, 2024
5*2024
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
F Seligmann, P Becker, M Volpp, G Neumann
Advances in Neural Information Processing Systems 36, 2024
52024
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P Becker, G Neumann
Transactions on Machine Learning Research, 2022
52022
Inferring Versatile Behavior from Demonstrations by Matching Geometric Descriptors
N Freymuth, N Schreiber, P Becker, A Taranovic, G Neumann
arXiv preprint arXiv:2210.08121, 2022
42022
Switching recurrent Kalman networks
G Nguyen-Quynh, P Becker, C Qiu, M Rudolph, G Neumann
arXiv preprint arXiv:2111.08291, 2021
42021
Curriculum-Based Imitation of Versatile Skills
MX Li, O Celik, P Becker, D Blessing, R Lioutikov, G Neumann
2023 IEEE International Conference on Robotics and Automation (ICRA), 2951-2957, 2023
32023
Accurate Bayesian Meta-Learning by Accurate Task Posterior Inference
M Volpp, P Dahlinger, P Becker, C Daniel, G Neumann
The Eleventh International Conference on Learning Representations, 2023
22023
Versatile Inverse Reinforcement Learning via Cumulative Rewards
N Freymuth, P Becker, G Neumann
arXiv preprint arXiv:2111.07667, 2021
22021
MuTT: A Multimodal Trajectory Transformer for Robot Skills
C Kienle, B Alt, O Celik, P Becker, D Katic, R Jäkel, G Neumann
arXiv preprint arXiv:2407.15660, 2024
12024
KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty
P Becker, N Freymuth, G Neumann
arXiv preprint arXiv:2406.15131, 2024
2024
Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations
N Freymuth, P Dahlinger, T Würth, P Becker, A Taranovic, O Grönheim, ...
arXiv preprint arXiv:2406.14161, 2024
2024
Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation
F Otto, P Becker, VA Ngo, G Neumann
arXiv preprint arXiv:2403.04453, 2024
2024
PointPatchRL-Masked Reconstruction Improves Reinforcement Learning on Point Clouds
B Gyenes, N Franke, P Becker, G Neumann
8th Annual Conference on Robot Learning, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20