Follow
Andrew Santiago-Frangos
Title
Cited by
Cited by
Year
Hfq chaperone brings speed dating to bacterial sRNA
A Santiago‐Frangos, SA Woodson
Wiley Interdisciplinary Reviews: RNA 9 (4), e1475, 2018
1592018
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA
A Santiago-Frangos, K Kavita, DJ Schu, S Gottesman, SA Woodson
Proceedings of the National Academy of Sciences 113 (41), E6089-E6096, 2016
1102016
Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry
MCF Rollins, S Chowdhury, J Carter, SM Golden, HM Miettinen, ...
Molecular cell 74 (1), 132-142. e5, 2019
922019
Proteins that chaperone RNA regulation
SA Woodson, S Panja, A Santiago-Frangos
Microbiology spectrum 6 (4), 10.1128/microbiolspec. rwr-0026-2018, 2018
762018
Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic
A Santiago-Frangos, LN Hall, A Nemudraia, A Nemudryi, P Krishna, ...
Cell Reports Medicine 2 (6), 2021
65*2021
Acidic C-terminal domains autoregulate the RNA chaperone Hfq
A Santiago-Frangos, JR Jeliazkov, JJ Gray, SA Woodson
Elife 6, e27049, 2017
642017
Acidic residues in the Hfq chaperone increase the selectivity of sRNA binding and annealing
S Panja, A Santiago-Frangos, DJ Schu, S Gottesman, SA Woodson
Journal of molecular biology 427 (22), 3491-3500, 2015
372015
AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex
M Hirschi, WT Lu, A Santiago-Frangos, R Wilkinson, SM Golden, ...
Nature Communications 11 (1), 2730, 2020
342020
Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation
A Santiago-Frangos, KS Fröhlich, JR Jeliazkov, EM Małecka, G Marino, ...
Proceedings of the National Academy of Sciences 116 (22), 10978-10987, 2019
212019
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation
A Santiago-Frangos, M Buyukyoruk, T Wiegand, P Krishna, B Wiedenheft
Current Biology 31 (16), 3515-3524. e6, 2021
172021
Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone
J Roca, A Santiago-Frangos, SA Woodson
Nature Communications 13 (1), 2449, 2022
152022
Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic
A Nemudraia, A Nemudryi, M Buyukyoruk, AM Scherffius, T Zahl, ...
Nature Communications 13 (1), 7762, 2022
142022
CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics
A Santiago-Frangos, A Nemudryi, A Nemudraia, T Wiegand, JE Nichols, ...
Methods 205, 1-10, 2022
142022
Cas9 slide‐and‐seek for phage defense and genome engineering
A Santiago‐Frangos, T Wiegand, B Wiedenheft
The EMBO Journal 38 (4), e101474, 2019
42019
Functional and phylogenetic diversity of Cas10 proteins
T Wiegand, R Wilkinson, A Santiago-Frangos, M Lynes, R Hatzenpichler, ...
The CRISPR Journal 6 (2), 152-162, 2023
32023
Protein-mediated genome folding allosterically enhances site-specific integration of foreign DNA into CRISPRs
A Santiago-Frangos, WS Henriques, T Wiegand, CC Gauvin, ...
bioRxiv, 2023.05. 26.542337, 2023
22023
Quantitative analysis of RNA chaperone activity by native gel electrophoresis and fluorescence spectroscopy
S Panja, EM Małecka, A Santiago-Frangos, SA Woodson
RNA Chaperones: Methods and Protocols, 19-39, 2020
22020
Viral proteins activate PARIS-mediated tRNA degradation and viral tRNAs rescue infection
N Burman, S Belukhina, F Depardieu, RA Wilkinson, M Skutel, ...
bioRxiv, 2024.01. 02.573894, 2024
12024
Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays
A Santiago-Frangos, WS Henriques, T Wiegand, CC Gauvin, ...
Nature Structural & Molecular Biology 30 (11), 1675-1685, 2023
12023
Engineered crispr-cas systems and methods for sensitive and specific diagnostics
BA Wiedenheft, A Santiago-frangos, AA Nemudraia, AA Nemudryi
US Patent App. 17/240,858, 2021
12021
The system can't perform the operation now. Try again later.
Articles 1–20