Follow
David Sondak
Title
Cited by
Cited by
Year
Neurodiffeq: A python package for solving differential equations with neural networks
F Chen, D Sondak, P Protopapas, M Mattheakis, S Liu, D Agarwal, ...
Journal of Open Source Software 5 (46), 1931, 2020
1162020
Hamiltonian neural networks for solving equations of motion
M Mattheakis, D Sondak, AS Dogra, P Protopapas
Physical Review E 105 (6), 065305, 2022
972022
Physical symmetries embedded in neural networks
M Mattheakis, P Protopapas, D Sondak, M Di Giovanni, E Kaxiras
arXiv preprint arXiv:1904.08991, 2019
742019
Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow
R Fang, D Sondak, P Protopapas, S Succi
Journal of Turbulence 21 (9-10), 525-543, 2020
552020
Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
SA Desai, M Mattheakis, D Sondak, P Protopapas, SJ Roberts
Physical Review E 104 (3), 034312, 2021
432021
Optimal heat transport solutions for Rayleigh–Bénard convection
D Sondak, LM Smith, F Waleffe
Journal of Fluid Mechanics 784, 565-595, 2015
412015
Solving differential equations using neural network solution bundles
C Flamant, P Protopapas, D Sondak
arXiv preprint arXiv:2006.14372, 2020
342020
A residual based eddy viscosity model for the large eddy simulation of turbulent flows
AA Oberai, J Liu, D Sondak, TJR Hughes
Computer Methods in Applied Mechanics and Engineering 282, 54-70, 2014
262014
Deep learning for turbulent channel flow
R Fang, D Sondak, P Protopapas, S Succi
arXiv preprint arXiv:1812.02241, 2018
242018
A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
D Sondak, JN Shadid, AA Oberai, RP Pawlowski, EC Cyr, TM Smith
Journal of Computational Physics 295, 596-616, 2015
242015
Can phoretic particles swim in two dimensions?
D Sondak, C Hawley, S Heng, R Vinsonhaler, E Lauga, JL Thiffeault
Physical Review E 94 (6), 062606, 2016
202016
Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows
H Sáez de Ocáriz Borde, D Sondak, P Protopapas
Journal of Turbulence 23 (1-2), 1-28, 2022
152022
Coherent solutions and transition to turbulence in two-dimensional Rayleigh-Bénard convection
P Kooloth, D Sondak, LM Smith
Physical Review Fluids 6 (1), 013501, 2021
132021
Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation
D Sondak, AA Oberai
Physics of Plasmas 19 (10), 2012
12*2012
Application of the variational Germano identity to the variational multiscale formulation
AA Oberai, D Sondak
International journal for numerical methods in biomedical engineering 27 (2 …, 2011
122011
Finding multiple solutions of odes with neural networks
M Di Giovanni, D Sondak, P Protopapas, M Brambilla
Combining Artificial Intelligence and Machine Learning with Physical …, 2020
92020
Learning a reduced basis of dynamical systems using an autoencoder
D Sondak, P Protopapas
Physical Review E 104 (3), 034202, 2021
62021
Multi-task learning based convolutional models with curriculum learning for the anisotropic reynolds stress tensor in turbulent duct flow
HS de Ocáriz Borde, D Sondak, P Protopapas
ArXiv, abs/2111.00328, 2021
52021
Unsupervised learning of solutions to differential equations with generative adversarial networks
D Randle, P Protopapas, D Sondak
arXiv preprint arXiv:2007.11133, 2020
52020
DEQGAN: learning the loss function for pinns with generative adversarial networks
B Bullwinkel, D Randle, P Protopapas, D Sondak
arXiv preprint arXiv:2209.07081, 2022
42022
The system can't perform the operation now. Try again later.
Articles 1–20