Towards universal paraphrastic sentence embeddings J Wieting, M Bansal, K Gimpel, K Livescu arXiv preprint arXiv:1511.08198, 2015 | 659 | 2015 |
Adversarial example generation with syntactically controlled paraphrase networks M Iyyer, J Wieting, K Gimpel, L Zettlemoyer arXiv preprint arXiv:1804.06059, 2018 | 568 | 2018 |
ParaNMT-50M: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations J Wieting, K Gimpel arXiv preprint arXiv:1711.05732, 2017 | 311 | 2017 |
From paraphrase database to compositional paraphrase model and back J Wieting, M Bansal, K Gimpel, K Livescu Transactions of the Association for Computational Linguistics 3, 345-358, 2015 | 305 | 2015 |
Charagram: Embedding words and sentences via character n-grams J Wieting, M Bansal, K Gimpel, K Livescu arXiv preprint arXiv:1607.02789, 2016 | 233 | 2016 |
Reformulating unsupervised style transfer as paraphrase generation K Krishna, J Wieting, M Iyyer arXiv preprint arXiv:2010.05700, 2020 | 141 | 2020 |
No training required: Exploring random encoders for sentence classification J Wieting, D Kiela arXiv preprint arXiv:1901.10444, 2019 | 111 | 2019 |
Learning paraphrastic sentence embeddings from back-translated bitext J Wieting, J Mallinson, K Gimpel arXiv preprint arXiv:1706.01847, 2017 | 107 | 2017 |
compare-mt: A tool for holistic comparison of language generation systems G Neubig, ZY Dou, J Hu, P Michel, D Pruthi, X Wang, J Wieting arXiv preprint arXiv:1903.07926, 2019 | 104 | 2019 |
Beyond BLEU: training neural machine translation with semantic similarity J Wieting, T Berg-Kirkpatrick, K Gimpel, G Neubig arXiv preprint arXiv:1909.06694, 2019 | 97 | 2019 |
Revisiting recurrent networks for paraphrastic sentence embeddings J Wieting, K Gimpel arXiv preprint arXiv:1705.00364, 2017 | 97 | 2017 |
Canine: Pre-training an efficient tokenization-free encoder for language representation JH Clark, D Garrette, I Turc, J Wieting Transactions of the Association for Computational Linguistics 10, 73-91, 2022 | 96 | 2022 |
Simple and effective paraphrastic similarity from parallel translations J Wieting, K Gimpel, G Neubig, T Berg-Kirkpatrick arXiv preprint arXiv:1909.13872, 2019 | 39 | 2019 |
UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement H He, J Wieting, K Gimpel, J Rao, J Lin | 37 | 2016 |
On learning text style transfer with direct rewards Y Liu, G Neubig, J Wieting arXiv preprint arXiv:2010.12771, 2020 | 24 | 2020 |
Improving candidate generation for low-resource cross-lingual entity linking S Zhou, S Rijhwani, J Wieting, J Carbonell, G Neubig Transactions of the Association for Computational Linguistics 8, 109-124, 2020 | 22 | 2020 |
A bilingual generative transformer for semantic sentence embedding J Wieting, G Neubig, T Berg-Kirkpatrick arXiv preprint arXiv:1911.03895, 2019 | 21 | 2019 |
Cogcompnlp: Your swiss army knife for nlp D Khashabi, M Sammons, B Zhou, T Redman, C Christodoulopoulos, ... Proceedings of the Eleventh International Conference on Language Resources …, 2018 | 19 | 2018 |
Rankgen: Improving text generation with large ranking models K Krishna, Y Chang, J Wieting, M Iyyer arXiv preprint arXiv:2205.09726, 2022 | 17 | 2022 |
Clustering With Side Information: From a Probabilistic Model to a Deterministic Algorithm D Khashabi, J Wieting, JY Liu, F Liang arXiv preprint arXiv:1508.06235, 2015 | 14 | 2015 |