A hybrid approach to privacy-preserving federated learning S Truex, N Baracaldo, A Anwar, T Steinke, H Ludwig, R Zhang, Y Zhou Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019 | 699 | 2019 |
Hybridalpha: An efficient approach for privacy-preserving federated learning R Xu, N Baracaldo, Y Zhou, A Anwar, H Ludwig Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019 | 263 | 2019 |
An optimal randomized incremental gradient method G Lan, Y Zhou Mathematical programming, 1-49, 2017 | 234 | 2017 |
Communication-efficient algorithms for decentralized and stochastic optimization G Lan, S Lee, Y Zhou Mathematical Programming, 1-48, 2017 | 226 | 2017 |
Tifl: A tier-based federated learning system Z Chai, A Ali, S Zawad, S Truex, A Anwar, N Baracaldo, Y Zhou, H Ludwig, ... Proceedings of the 29th International Symposium on High-Performance Parallel …, 2020 | 192 | 2020 |
Conditional gradient sliding for convex optimization G Lan, Y Zhou SIAM Journal on Optimization 26 (2), 1379-1409, 2016 | 166 | 2016 |
IBM Federated Learning: an Enterprise Framework White Paper V0. 1 H Ludwig, N Baracaldo, G Thomas, Y Zhou, A Anwar, S Rajamoni, Y Ong, ... arXiv preprint arXiv:2007.10987, 2020 | 100 | 2020 |
Towards taming the resource and data heterogeneity in federated learning Z Chai, H Fayyaz, Z Fayyaz, A Anwar, Y Zhou, N Baracaldo, H Ludwig, ... 2019 USENIX conference on operational machine learning (OpML 19), 19-21, 2019 | 71 | 2019 |
A unified variance-reduced accelerated gradient method for convex optimization G Lan, Z Li, Y Zhou Advances in Neural Information Processing Systems 32, 2019 | 62 | 2019 |
Mitigating Bias in Federated Learning A Abay, Y Zhou, N Baracaldo, S Rajamoni, E Chuba, H Ludwig arXiv preprint arXiv:2012.02447, 2020 | 57 | 2020 |
Towards federated graph learning for collaborative financial crimes detection T Suzumura, Y Zhou, N Baracaldo, G Ye, K Houck, R Kawahara, A Anwar, ... arXiv preprint arXiv:1909.12946, 2019 | 54 | 2019 |
Random gradient extrapolation for distributed and stochastic optimization G Lan, Y Zhou SIAM Journal on Optimization 28 (4), 2753-2782, 2018 | 50 | 2018 |
Conditional accelerated lazy stochastic gradient descent G Lan, S Pokutta, Y Zhou, D Zink International Conference on Machine Learning, 1965-1974, 2017 | 40 | 2017 |
FedV: Privacy-Preserving Federated Learning over Vertically Partitioned Data R Xu, N Baracaldo, Y Zhou, A Anwar, J Joshi, H Ludwig Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security …, 2021 | 37 | 2021 |
Curse or redemption? how data heterogeneity affects the robustness of federated learning S Zawad, A Ali, PY Chen, A Anwar, Y Zhou, N Baracaldo, Y Tian, F Yan Proceedings of the AAAI Conference on Artificial Intelligence 35 (12), 10807 …, 2021 | 36 | 2021 |
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning Y Zhou, P Ram, T Salonidis, N Baracaldo, H Samulowitz, H Ludwig arXiv preprint arXiv:2112.08524, 2021 | 17 | 2021 |
Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning YJ Ong, Y Zhou, N Baracaldo, H Ludwig arXiv preprint arXiv:2012.06670, 2020 | 15 | 2020 |
LEGATO: A LayerwisE Gradient AggregaTiOn Algorithm for Mitigating Byzantine Attacks in Federated Learning K Varma, Y Zhou, N Baracaldo, A Anwar 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), 272-277, 2021 | 12 | 2021 |
Asynchronous decentralized accelerated stochastic gradient descent G Lan, Y Zhou IEEE Journal on Selected Areas in Information Theory 2 (2), 802-811, 2021 | 12 | 2021 |
Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization G Lan, Y Ouyang, Y Zhou SIAM Journal on Optimization 33 (3), 1647-1675, 2023 | 7 | 2023 |