Follow
Daniel Salles Civitarese
Daniel Salles Civitarese
IBM Research
Verified email at br.ibm.com
Title
Cited by
Cited by
Year
Correlation analysis of performance measures for multi-label classification
RB Pereira, A Plastino, B Zadrozny, LHC Merschmann
Information Processing & Management 54 (3), 359-369, 2018
1442018
Provenance data in the machine learning lifecycle in computational science and engineering
R Souza, L Azevedo, V Lourenço, E Soares, R Thiago, R Brandão, ...
2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), 1-10, 2019
472019
Netherlands dataset: A new public dataset for machine learning in seismic interpretation
RM Silva, L Baroni, RS Ferreira, D Civitarese, D Szwarcman, EV Brazil
arXiv preprint arXiv:1904.00770, 2019
452019
Deep learning applied to seismic facies classification: A methodology for training
DS Chevitarese, D Szwarcman, RMG e Silva, EV Brazil
Saint Petersburg 2018 2018 (1), 1-5, 2018
352018
Efficient classification of seismic textures
DS Chevitarese, D Szwarcman, EV Brazil, B Zadrozny
2018 International Joint Conference on Neural Networks (IJCNN), 1-8, 2018
302018
Seismic facies segmentation using deep learning
D Chevitarese, D Szwarcman, RMD Silva, EV Brazil
AAPG Annual and Exhibition, 2018
302018
Workflow provenance in the lifecycle of scientific machine learning
R Souza, LG Azevedo, V Lourenço, E Soares, R Thiago, R Brandão, ...
Concurrency and Computation: Practice and Experience 34 (14), e6544, 2022
242022
Quantum-inspired neural architecture search
D Szwarcman, D Civitarese, M Vellasco
2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019
232019
Semantic segmentation of seismic images
D Civitarese, D Szwarcman, EV Brazil, B Zadrozny
arXiv preprint arXiv:1905.04307, 2019
222019
Transfer learning applied to seismic images classification
D Chevitarese, D Szwarcman, RMD Silva, EV Brazil
AAPG Annual and Exhibition, 2018
202018
Quantum-inspired evolutionary algorithm applied to neural architecture search
D Szwarcman, D Civitarese, M Vellasco
Applied Soft Computing 120, 108674, 2022
132022
Extreme precipitation seasonal forecast using a transformer neural network
DS Civitarese, D Szwarcman, B Zadrozny, C Watson
arXiv preprint arXiv:2107.06846, 2021
112021
Exploring data streaming to improve 3D FFT implementation on multiple GPUs
CP da Silva, LF Cupertino, D Chevitarese, MAC Pacheco, C Bentes
2010 22nd International Symposium on Computer Architecture and High …, 2010
102010
Managing machine learning workflow components
M Moreno, V Lourenço, SR Fiorini, P Costa, R Brandão, D Civitarese, ...
International Journal of Semantic Computing 14 (02), 295-309, 2020
82020
Penobscot dataset: Fostering machine learning development for seismic interpretation
L Baroni, RM Silva, RS Ferreira, D Civitarese, D Szwarcman, EV Brazil
arXiv preprint arXiv:1903.12060, 2019
72019
Machine learning to predict cognitive image composition
P Borrel, AB Buoro, RAA Barros, DS Chevitarese
US Patent 10,592,743, 2020
62020
Ai foundation models for weather and climate: Applications, design, and implementation
SK Mukkavilli, DS Civitarese, J Schmude, J Jakubik, A Jones, N Nguyen, ...
arXiv preprint arXiv:2309.10808, 2023
52023
Vacuum Ultraviolet Laser Induced Breakdown Spectroscopy (VUV-LIBS) with machine learning for pharmaceutical analysis
MB Alli, D Szwarcman, DS Civitarese, P Hayden
Journal of Physics: Conference Series 1289 (1), 012031, 2019
52019
Speeding up the training of neural networks with cuda technology
DS Chevitarese, D Szwarcman, M Vellasco
Artificial Intelligence and Soft Computing: 11th International Conference …, 2012
52012
Machine learning engineering through hybrid knowledge representation
MF Moreno, DS Civitarese, LCV Real, RR de Mello Brandao, ...
US Patent 11,687,795, 2023
42023
The system can't perform the operation now. Try again later.
Articles 1–20