Conditional neural processes M Garnelo, D Rosenbaum, C Maddison, T Ramalho, D Saxton, ... International conference on machine learning, 1704-1713, 2018 | 771 | 2018 |
Neural scene representation and rendering SMA Eslami, D Jimenez Rezende, F Besse, F Viola, AS Morcos, ... Science 360 (6394), 1204-1210, 2018 | 716 | 2018 |
Deep unsupervised clustering with gaussian mixture variational autoencoders N Dilokthanakul, PAM Mediano, M Garnelo, MCH Lee, H Salimbeni, ... arXiv preprint arXiv:1611.02648, 2016 | 690 | 2016 |
Neural processes M Garnelo, J Schwarz, D Rosenbaum, F Viola, DJ Rezende, SM Eslami, ... arXiv preprint arXiv:1807.01622, 2018 | 612 | 2018 |
Attentive neural processes H Kim, A Mnih, J Schwarz, M Garnelo, A Eslami, D Rosenbaum, O Vinyals, ... arXiv preprint arXiv:1901.05761, 2019 | 450 | 2019 |
Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma M Garnelo, A Tan, Z Her, J Yeong, CJ Lim, J Chen, KH Lim, A Weber, ... Gut 66 (2), 342-351, 2017 | 427 | 2017 |
Reconciling deep learning with symbolic artificial intelligence: representing objects and relations M Garnelo, M Shanahan Current Opinion in Behavioral Sciences 29, 17-23, 2019 | 295 | 2019 |
Towards deep symbolic reinforcement learning M Garnelo, K Arulkumaran, M Shanahan Deep Reinforcement Learning Workshop at the 30th Conference on Neural …, 2016 | 267 | 2016 |
Open-ended learning in symmetric zero-sum games D Balduzzi, M Garnelo, Y Bachrach, W Czarnecki, J Perolat, M Jaderberg, ... International Conference on Machine Learning, 434-443, 2019 | 183 | 2019 |
Adaptive posterior learning: few-shot learning with a surprise-based memory module T Ramalho, M Garnelo arXiv preprint arXiv:1902.02527, 2019 | 104 | 2019 |
Game Plan: What AI can do for Football, and What Football can do for AI K Tuyls, S Omidshafiei, P Muller, Z Wang, J Connor, D Hennes, I Graham, ... Journal of Artificial Intelligence Research 71, 41-88, 2021 | 101 | 2021 |
An explicitly relational neural network architecture M Shanahan, K Nikiforou, A Creswell, C Kaplanis, D Barrett, M Garnelo International Conference on Machine Learning, 8593-8603, 2020 | 74 | 2020 |
Inferring a continuous distribution of atom coordinates from cryo-EM images using VAEs D Rosenbaum, M Garnelo, M Zielinski, C Beattie, E Clancy, A Huber, ... arXiv preprint arXiv:2106.14108, 2021 | 46 | 2021 |
Empirical evaluation of neural process objectives TA Le, H Kim, M Garnelo, D Rosenbaum, J Schwarz, YW Teh NeurIPS workshop on Bayesian Deep Learning 4, 2018 | 46 | 2018 |
Consistent generative query networks A Kumar, SM Eslami, DJ Rezende, M Garnelo, F Viola, E Lockhart, ... arXiv preprint arXiv:1807.02033, 2018 | 40 | 2018 |
A neural architecture for designing truthful and efficient auctions A Tacchetti, DJ Strouse, M Garnelo, T Graepel, Y Bachrach arXiv preprint arXiv:1907.05181 3 (3.6), 4, 2019 | 34 | 2019 |
Meta-learning surrogate models for sequential decision making A Galashov, J Schwarz, H Kim, M Garnelo, D Saxton, P Kohli, SM Eslami, ... arXiv preprint arXiv:1903.11907, 2019 | 32 | 2019 |
Verification of deep probabilistic models K Dvijotham, M Garnelo, A Fawzi, P Kohli arXiv preprint arXiv:1812.02795, 2018 | 31 | 2018 |
Pick your battles: Interaction graphs as population-level objectives for strategic diversity M Garnelo, WM Czarnecki, S Liu, D Tirumala, J Oh, G Gidel, ... arXiv preprint arXiv:2110.04041, 2021 | 26 | 2021 |
Game-theoretic vocabulary selection via the shapley value and banzhaf index R Patel, M Garnelo, I Gemp, C Dyer, Y Bachrach Proceedings of the 2021 Conference of the North American Chapter of the …, 2021 | 20 | 2021 |