Follow
Mark Schmidt
Mark Schmidt
Associate Professor of Computer Science, University of British Columbia
Verified email at cs.ubc.ca - Homepage
Title
Cited by
Cited by
Year
Minimizing finite sums with the stochastic average gradient
M Schmidt, N Le Roux, F Bach
Mathematical Programming (MAPR), 2017, 2013
1387*2013
Linear Convergence of Gradient and Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition
H Karimi, J Nutini, M Schmidt
European Conference on Machine Learning (ECML), 2016
11322016
A stochastic gradient method with an exponential convergence rate for finite training sets
N Le Roux, M Schmidt, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2012
10312012
Convergence rates of inexact proximal-gradient methods for convex optimization
M Schmidt, N Le Roux, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2011
6522011
Fast optimization methods for l1 regularization: A comparative study and two new approaches
M Schmidt, G Fung, R Rosales
European Conference on Machine Learning (ECML), 2007
4612007
Hybrid deterministic-stochastic methods for data fitting
MP Friedlander, M Schmidt
SIAM Journal on Scientific Computing (SISC), 2012
4482012
Block-coordinate Frank-Wolfe optimization for structural SVMs
S Lacoste-Julien, M Jaggi, M Schmidt, P Pletscher
International Conference on Machine Learning (ICML), 2013
4362013
Accelerated training of conditional random fields with stochastic gradient methods
SVN Vishwanathan, NN Schraudolph, MW Schmidt, KP Murphy
International Conference on Machine Learning (ICML), 2006
4212006
Fast patch-based style transfer of arbitrary style
TQ Chen, M Schmidt
NeurIPS Workshop on Constructive Machine Learning, 2016
4152016
Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
V Cevher, S Becker, M Schmidt
IEEE Signal Processing Magazine, 2014
3542014
Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm
MW Schmidt, E Berg, MP Friedlander, KP Murphy
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009
3252009
Fast and faster convergence of SGD for over-parameterized models and an accelerated perceptron
S Vaswani, F Bach, M Schmidt
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
3022019
Learning graphical model structure using L1-regularization paths
M Schmidt, A Niculescu-Mizil, K Murphy
National Conference on Artificial Intelligence (AAAI), 2007
2862007
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
S Lacoste-Julien, M Schmidt, F Bach
arXiv preprint arXiv:1212.2002, 2012
2662012
minFunc: unconstrained differentiable multivariate optimization in Matlab
M Schmidt
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005
262*2005
Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection
J Nutini, M Schmidt, IH Laradji, M Friedlander, H Koepke
International Conference on Machine Learning (ICML), 2015
2612015
Modeling annotator expertise: Learning when everybody knows a bit of something
Y Yan, R Rosales, G Fung, MW Schmidt, GH Valadez, L Bogoni, L Moy, ...
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010
2482010
Online Learning Rate Adaptation with Hypergradient Descent
AG Baydin, R Cornish, DM Rubio, M Schmidt, F Wood
International Conference on Learning Representations (ICLR), 2018
2462018
Least squares optimization with l1-norm regularization
M Schmidt
CPSC 542B Course Project Report, 2005
2402005
Method and System for Automatic Detection and Segmentation of Tumors and Associated Edema (Swelling) in Magnetic Resonance (Mri) Images
M Schmidt, R Greiner, AD Murtha
US Patent App. 11/912,864, 2008
2312008
The system can't perform the operation now. Try again later.
Articles 1–20